Spectral Characteristics of Uniform Fiber Bragg Grating With Different Grating Length and Refractive Index Variation

نویسندگان

  • Chiranjit Ghosh
  • Biswajit Ghosh
چکیده

The spectral response of the uniform FBG with different grating parameters such as grating length and index change are provided and discussed. The coupled mode theory is a suitable tool for analysis and obtaining quantitative information about the spectrum of a fiber Bragg grating. The coupled mode equations can be obtained and simplified by using the weak waveguide approximation. The spectrum characteristics can be obtained by solving these coupled mode equations. In this paper simulation of FBG has been carried out to analyze the spectral characteristics of the FBG. An optical FBG is being simulated with the help of advanced software module such as the R soft and the modeled sensor is evaluated for the grating and different efficiency of various grating shape parameters, modulation depth,etc. The relationship between the maximum reflectance, 3dB bandwidth and centre wavelength with grating parameters are also given and discussed. Optimization and improvement of the system can be realized by using the simulation results. Since the present work not only deals with theoretical aspects of FBGs but also leads to the development of simulation tools which can be used in the area of communications and sensors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Bistability in Nonlinear Chalcogenide Fiber Bragg Grating for All Optical Switch and Memory Applications

We solve the coupled mode equations governing the chalcogenide nonlinear fiber Bragg gratings (FBGs) numerically, and obtain the bistability characteristics. The characteristics of the chalcogenide nonlinear FBGs such as: switching threshold intensity, bistability interval and on-off switching ratio are studied. The effects of FBG length and its third order nonlinear refractive index on FBG cha...

متن کامل

Modeling and Simulation of Fiber Bragg Grating (Fbg) As A Strain Sensor

This study presents the modelling, simulation, and characterization of the Fiber Bragg grating (FBG) on maximum reflectivity, bandwidth, the effect of applied strain to the wavelength shift, ŽB and sensitivity of the wavelength shift with strain for optical sensing system. In this study, a commercial FBG with the center wavelength of 1550nm is used in order to measure the spectral response of F...

متن کامل

Dispersion and Peak Reflectivity Analysis in a Non-uniform Fbg Based Sensors Due to an Arbitrary Refractive Index Profile

This paper deals with a group velocity dispersion issue and a peak reflectivity issue in a non-uniform fiber Bragg gratings (FBG) due to an arbitrary refractive index profile along the length of grating. The paper shows that by using more complicated refractive index profile one can significantly reduce the group velocity dispersion and side lobes intensity and that in main lobe the bandwidth o...

متن کامل

Design of a Chirped Fiber Bragg Grating for Use in Wideband Dispersion Compensation

A wideband chirped fiber Bragg grating (FBG) dispersion compensator operating in C band is designed theoretically by numerically solving the coupled mode equations. The power reflectivity spectrum and dispersion characteristics of the chirped fiber Bragg gratings are analysed. In order to achieve wideband dispersion compensation with a low insertion loss, grating length, average refractive inde...

متن کامل

Pulse shaping with a phase-shifted fiber Bragg grating for antisymmetric pulse generation

Pulses of arbitrary temporal shape can be generated by spectrally filtering a short pulse. Frequency selective reflectors, such as fiber Bragg gratings, can be designed to obtain the desired pulse shape. The required distribution of the refractive index modulation, amplitude and phase, can be calculated using inverse scattering techniques. For weak gratings, under the Born approximation, the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015